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Abstract

Based on the observed absence of gravitational aberration, Van
Flandern has recently argued that gravity has been experimentally
shown to propagate at a speed of at least 2 x 10'%. But the trans-
lation from directional observations to propagation speed is theory-
dependent, and Van Flandern has made implicit assumptions about
a model for gravitation that do not hold for general relativity. By
explicitly computing the gravitational effect of an accelerating mass
in general relativity, I show that the gravitational aberration is al-
most exactly canceled by velocity-dependent interactions, and that
nothing need propagate faster than light. I discuss the underlying
cause of this cancellation: it is required by conservation laws and
by the quadrupole nature of gravitational radiation.
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In a recent paper in Physics Letters A [1], Van Flandern has argued that observations
show that gravity propagates at a speed much greater than c¢. In the absence of direct
measurements of propagation speed, Ref. [I] relies instead on directional information, in
the form of observations of (the absence of) gravitational aberration. But the translation
from a direction to a speed requires theoretical assumptions, and the implicit assumptions
of Ref. [1]-—in particular, that the interaction is purely central, with no velocity-dependent
terms—do not hold for general relativity, or, for that matter, for Maxwell’s electrodynamics.

In this paper, I explicitly compute the gravitational effect of an arbitrarily accelerating
source, Kinnersley’s “photon rocket” [2]. Although gravity propagates at the speed of light in
general relativity, the expected aberration is almost exactly canceled by velocity-dependent
terms in the interaction. While at first this cancellation seems to be “miraculous,” it can be
explained from first principles by turning Van Flandern’s argument on its head: conservation
of energy and angular momentum, together with the quadrupole nature of gravitational
radiation, require that any causal theory have such a cancellation.

1 Aberration in Electromagnetism

It is certainly true, although perhaps not widely enough appreciated, that observations
are incompatible with Newtonian gravity with a light-speed propagation delay added in [8,4].
If one begins with a purely central force and puts in a finite propagation speed by hand, the
forces in a two-body system no longer point toward the center of mass, and the resulting
tangential accelerations make orbits drastically unstable. A simple derivation is given in
problem 12.4 of Ref. [4], where it is shown that Solar System orbits would shift substantially
on a time scale on the order of a hundred years. By analyzing the motion of the Moon,
Laplace concluded in 1805 that the speed of (Newtonian) gravity must be at least 7x 10%¢ [5].
Using modern astronomical observations, Van Flandern raised this limit to 2 x 10"¢ [1i.

But this argument, at least in its simplest form, holds only if one postulates that the
relevant force is purely central and independent of the source velocity. For Maxwell’s elec-
trodynamics and Einstein’s general relativity, this assumption fails.

Let us begin with the simpler case of electromagnetism. It is well known that if a charged
source moves at a constant velocity, the electric field experienced by a test particle points
toward the source’s “instantaneous” position rather than its retarded position. Lorentz
invariance demands that this be the case, since one may just as well think of the charge as
being at rest while the test particle moves. This effect does not mean that the electric field
propagates instantaneously; rather, the field of a moving charge has a velocity-dependent
component that cancels the effect of propagation delay to first order [G].

It is helpful to analyze this case a bit more carefully, while establishing notation that will
be useful below when we consider general relativity. Let the source move along a timelike
world line C' in flat Minkowski spacetime, with position z#(s) and four-velocity M = dz* /ds.
The backwards light cone from any point z* will intersect C' at a point 2#(sg) (see figure 1),
and this relation can be viewed as an implicit definition of the retarded proper time sg(x):

Mo — 2 (sr)) (" — 2*(sr)) = 0. (1.1)



Figure 1: The geometry of retarded positions in Minkowski space

Let
ot =zt — 2#(sR) (1.2)

denote the null vector connecting = and C'. Differentiating (1°I), we obtain

Opu

Ousr(x) = pat (1.3)

where

r(z) = M(sr)o, (1.4)

is an invariant retarded distance from z to C'. In terms of a (341)-dimensional decomposition
of spacetime, we have

o®=R, o'=Rn

N =R, N =0k, (1.5)

where R = |x — z(sg)| = t — 2%(sg) is the retarded spatial distance, vg is the retarded
velocity, v = (1 — v%)7™"/2, and n is a unit spatial vector pointing toward the retarded
position of the source. In “propagation-delayed Newtonian gravity,” aberration appears as
the fact that the force is directed along n, and not along the vector pointing toward the
“instantaneous” position of the source.

With these conventions, the Liénard-Wiechert potential in Maxwell’s electrodynamics
can be written as [7]

e
AP = = )\H, 1.6
- (1L6)

Using standard identities [2,§] obtained from eqn. (1.3) and the chain rule, one obtains a
field strength tensor

d\ d\, d\,
F,=0,A —0A, = ?% (1 — gp_p> (0 A\ — o) + ?"E (JN— — o, —t ) ) (1.7)
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In particular, eqn. (1.5) implies that the electric field can be written as

Ei=F"° = oy ¢ V) (n' —v") + radiative terms, (1.8)
R — VR

where the omitted radiative terms depend explicitly on acceleration and fall off as 1/R rather
than 1/R?. Note that every term in eqns. (iI.G)—(1.8) is retarded, and nothing depends on
the “instantaneous” position of the source.ii Nevertheless, the direction of the nonradiative
“Coulomb” force in (1:8) is

ni—vi=(1—n-vg) (ni—l—(t—zo(sR))d(Zi>. (1.9)

The second term in this expression is essentially a linear extrapolation from the retarded
direction n’ toward the “instantaneous” direction. In particular, for a charge in uniform
motion it is easy to check that n’ — v’ points toward the “instantancous” position, so the
effects of aberration are exactly canceled.

As this derivation shows, the immediate cause of this cancellation is that electromag-
netism is a vector rather than a scalar interaction. Specifically, the effect of retardation in
the “scalar potential” term 0;A is partially compensated by the velocity-dependent “vector
potential” term 0yA;. I will return to this point later.

Does eqn. (i.8) imply that the electric field propagates instantaneously? Clearly not.
In particular, if a uniformly moving charge suddenly stops at position z(sg), the field at a
distant location x will continue to point toward its “extrapolated” position—even though
the charge never actually reaches that position—until the time ¢ — z(s¢) that it takes for
light to travel from z(sg) to x. At that time, the field will abruptly switch direction to point
toward the true position of the source. This sudden change in the field, propagating outward
from z(sgp) at the speed of light, is what we mean by the electromagnetic radiation of an
accelerated charge. One could, of course, try to formulate an alternative model in which
the Coulomb field acted instantaneously, but only at the expense of “deunifying” Maxwell’s
equations and breaking the connection between electric fields and electromagnetic radiation.

2 Aberration in Gravity

If we try to extend the arguments of the preceding section to general relativity, we face
two subtleties. First, there is no preferred time-slicing in general relativity, and thus no
unique definition of an “instantaneous” direction. For weak fields, we can use the nearly flat
background to define a nearly Minkowski coordinate system, but we must expect ambiguities
of order v2. Second, we cannot simply require that a massive source accelerate. The Einstein
field equations are consistent only when all gravitational sources move along the trajectories
determined by their equations of motion. In particular, we can consistently represent an
accelerated source only if we include the energy responsible for its acceleration.

*The potential (:_1-_6-3:) is, of course, gauge-dependent, and a different gauge choice such as Coulomb gauge
can give it an “instantaneous” component. However, all physical quantities such as the electric field are
gauge-invariant and are strictly retarded. See Ref. [i_):] for a discussion.

3



Fortunately, an exact solution for such an accelerated source exists. Kinnersley’s “photon
rocket” [2,8,10] represents a mass with an arbitrary acceleration brought about by the non-
isotropic emission of electromagnetic radiation. Its metric, in the notation of the preceding

section, is
2G'm(sg
Guv = N — ?,,73()0_/‘0_”' (21)

This metric contains four arbitrary functions of time, a time-varying mass m and the three
independent components of the acceleration d\*/ds. In general, it has a nonvanishing stress-
energy tensor proportional to ¢,0,, representing radiation or null dust streaming out from
the world line C; it reduces to the Schwarzschild metric, with a vanishing stress-energy
tensor, when m is constant and C' is a straight line.

A test particle in the spacetime (2.1) will travel along a geodesic. If we use the flat metric
m = 0 to define background Minkowski coordinates, the “acceleration” of such a particle,
in Newtonian language, is determined by the connection I'/,. In particular, if the particle is

initially at rest, its “acceleration” is —I'{,. A long but routine computation yieldsh

2Gm m
== Tnlwa” + T—4(3)\“0V0” +3\,0,0° — 0,0,)°)
3Gm d\" 2G?*m? 1 _dm
- ( — 07E> 0,0,07 — s 0,0,07 — TIGEJHUVJp, (2.2)
and in particular,
Gm 1

I, = 1—2n-vg—2n-vg)?+3vi)n'—(1—n- :
W= v%(l—n.mf[( n- Ve =20 ve)’ +30R) 0~ (L0 v
2Gm 1

R (1 —n-vg

)n’] + radiative terms. (2.3)

As in the electromagnetic case (1.8), the leading nonradiative term in (2.3) is proportional
to n® — v', so to lowest order there is no aberration. Now, however, there are additional
corrections of higher order in v. It is not hard to show that the effect of these corrections
is to further “extrapolate” from the retarded position toward the “instantaneous” position.
Indeed, one finds that

ri Gm 1 (1 + e 2Gm 1 '+ e30')| + radiative ¢
= € — n' + exv radiative terms
“ R 43(1—n-vp)? o R (1 —n-vpe) i
(2.4)
where i1 i
i i 0 n' 0 pdn’
n'=n"+(t—z"(sr)) o +§(t—z (sgr)) e (2.5)

and €; and €, are of order v2. In other words, the gravitational acceleration is directed toward
the retarded position of the source quadratically extrapolated toward its “instantaneous”
position, up to small nonlinear terms and corrections of higher order in velocities.

TNote that there is a sign error in Ref. [2].



Does eqn. (2.4) imply that gravity propagates instantaneously? As in the case of elec-
tromagnetism, it clearly does not. Every term in the connection I, depends only on the
retarded position, velocity, and acceleration of the source. The vector (2:5) does not point
toward the “instantaneous” position of the source, but only toward its position extrapolated
from this retarded data. In particular, as in Maxwell’s theory, if a source abruptly stops
moving at a point z(s), a test particle at position = will continue to accelerate toward the
extrapolated position of the source until the time it takes for a signal to propagate from z(s)
to x at light speed.

A similar result can be obtained in general relativity by systematically approximating
the solution of the two-body problem [11]. As in the case considered here, the gravitational
interaction propagates at the speed of light, but velocity-dependent terms in the interaction
nearly cancel the effect of aberration. Indeed, it can be rigorously proven that no gravita-
tional influence in general relativity can travel faster than the speed of light [12].

It is worth noting that the cancellation between aberration and velocity-dependent terms
in general relativity is not quite exact. If gravity could be described exactly as an instanta-
neous, central interaction, the mechanical energy and angular momentum of a system such
as a binary pulsar would be exactly conserved, and orbits could not decay. In general relativ-
ity, the gravitational radiation reaction appears as a slight mismatch between the effects of
aberration and the extra noncentral terms in the equations of motion [I'l]. One could again
try to formulate an alternative theory in which gravity propagated instantaneously, but, as
in electromagnetism, only at the expense of “deunifying” the field equations and treating
gravity and gravitational radiation as independent phenomena.

3 Is the Cancellation a Miracle?

We have seen that the observed lack of aberration in gravitational interactions need not
imply an infinite propagation speed, but can be explained as the effect of velocity-dependent
terms in the interaction. There is still something to understand, though: a cancellation as
exact as that of eqns. (1.9) and (2.5) must surely have a more fundamental origin.

The answer can be obtained by standing the argument of Ref. [1] on its head. As
Van Flandern emphasized, a retarded purely central force with no velocity-dependent terms
inevitably leads to the drastic nonconservation of mechanical angular momentum and energy
of a binary system. But by Noether’s theorem, any theory derived from a Lagrangian
invariant under rotations and time translations must conserve total angular momentum and
energy. This is only possible if changes in mechanical angular momentum and energy are
compensated by changes in the angular momentum and energy of radiation.

For electromagnetism, conservation of charge implies that there is no monopole radiation,
and the power radiated in dipole radiation is proportional to |d?d/dt?|?, where d is the electric
dipole moment of the source. Since the first derivative dd/dt is proportional to the velocity,
a charge moving at a constant velocity can radiate no angular momentum or energy. Hence
to first order in velocity, any nonconservation of mechanical angular momentum and energy
due to finite propagation speed must be canceled by additional terms in the interaction. The
exact mechanism for this cancellation may vary from theory to theory, but its existence is



guaranteed by the invariance of the Lagrangian, and we can be certain that it will appear
in any field equations derived from an appropriately invariant action.

For gravity, conservation of momentum and angular momentum also rule out dipole
radiation [IF]. The lowest order gravitational radiation is quadrupolar, and the radiated
power goes as |d*Q/dt?|?, where Q is the mass quadrupole moment of the source. A source
with a constant second derivative of Q can therefore radiate no angular momentum or
energy, and any nonconservation of mechanical angular momentum and energy must again
be canceled by additional terms in the interaction. The second derivative d*Q/dt? involves
terms proportional to acceleration and to the square of the velocity, so the cancellation must
occur at a higher order than it did for electromagnetism.

Note that the dipolar nature of electromagnetic radiation is intimately tied to the fact
that the electromagnetic interaction is vectorial (spin 1). This explains the remark at the
end of section 1: the first-order cancellation of aberration arises from the relationship among
components of the vector potential, and would not appear in a scalar theory. Similarly, the
quadrupolar nature of gravitational radiation is tied to the traceless tensorial (spin 2) form
of the interaction. It would be interesting to trace the second-order cancellation (2.5) more
concretely to this fact.

Finally, let us return to the question asked in Ref. [I]: what do experiments say about
the speed of gravity? The answer, unfortunately, is that so far they say fairly little. In the
absence of direct measurements of propagation speed, observations must be filtered through
theory, and different theoretical assumptions lead to different deductions. In particular,
while the observed absence of aberration is consistent with instantaneous propagation (with
an extra interaction somehow added on to explain the gravitational radiation reaction), it is
also consistent with the speed-of-light propagation predicted by general relativity.

Within the framework of general relativity, though, observations do give an answer. The
Einstein field equations contain a single parameter c,, which describes both the speed of
gravitational waves and the “speed of gravity” occurring in the expression for aberration
and in the velocity-dependent terms in the interaction. This parameter appears in the
gravitational radiation reaction in the form 09_5, and the success of the theory in explaining
the orbital decay of binary pulsars implies that ¢, = ¢ at the 1% level or better [14].

Acknowledgements

This work was supported in part by Department of Energy grant DE-FG03-91ER40674.

References
[1] T. Van Flandern, Phys. Lett. A250 (1998) 1.

[2] W. Kinnesley, Phys. Rev. 186 (1969) 1335.
3] L J. Good, Am. J. Phys. 43 (1975) 640.



[4] A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in
Relativity and Gravitation (Princeton University Press, Princeton, 1975).

[5] P. S. Laplace, A Treatise in Celestial Mechanics, Volume IV, Book X, Chapter VII,
translated by N. Bowditch (Chelsea, New York, 1966).

[6] R. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics,
Volume II, Chapter 21 (Addison-Wesley, Redwood City, 1989).

(7] J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
[8] T. Damour, Class. Quantum Grav. 12 (1995) 725.

[9] O. L. Brill and B. Goodman, Am. J. Phys. 35 (1967) 832.

[10] W. B. Bonnor, Class. Quantum Grav. 11 (1994) 2007.

[11] T. Damour, in 300 Years of Gravitation, edited by S. W. Hawking and W. Israel (Cam-
bridge University Press, Cambridge, 1987).

[12] R. J. Low, Class. Quantum Grav. 16 (1999) 543.

[13] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Section 36.1 (W. H.
Freeman, San Francisco, 1973).

[14] J. H. Taylor, Rev. Mod. Phys. 66 (1994) 711.



